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ABSTRACT

As the increasing amount of data is collected in mobile
wireless networks for emerging pervasive applications,
data-centric storage provides energy-efficient data dissem-
ination and organization. One of the approaches in data-
centric storage is that the nodes that collected data will
transfer their data to other neighboring nodes that store
the similar type of data. However, when the nodes are
mobile, type-based data distribution alone cannot provide
robust data storage and retrieval, since the nodes that
store similar types may move far away and can not
be easily reachable in the future. In order to minimize
the communication overhead and achieve efficient data
retrieval in data-centric mobile environments, we propose
a fully distributed neighborhood prediction scheme that
utilizes past node trajectory information to determine
the near likely node in the future as the best content
distributee. We developed two methods that predict the
Sfuture neighborhood based on the correlations of the past
trajectories. Our extensive simulation results demonstrate
that our prediction approaches can effectively and effi-
ciently predict the future neighborhood with high accuracy.

I. INTRODUCTION

The development of data-centric storage has enabled
efficient data dissemination of wireless networks. In data-
centric storage, data is stored by attributes or types (e.g.,
geographic location and event type) at nodes within the
network [1]-[3]. Queries for data with a particular attribute
will be sent directly to the relevant node(s) instead of
performing flooding throughout the network, thereby data-
centric storage enables efficient data dissemination/access.

There has been work in data-centric storage of sensor
networks. In these work, sensors that collect the data,
called collector nodes, and store their data by attributes
or types on other nodes, called storage nodes [3]. Most
existing data-centric storage models can only deal with
static wireless sensor networks. However, with the increas-
ing deployment of wireless networks, there are emerging
pervasive applications that rely on the mobility of wireless

978-1-4244-5239-2/09/$26.00 ©2009 IEEE

devices. Two representative examples are: (1) the sensors
are used for animal migration tracking, (2) the wireless
devices are equipped with police officers to monitor their
daily patrol routes, collect crime information by areas,
and record corresponding law enforcement actions. In the
first scenario, static centralized data storage may not be
available, and in both two scenarios, efficient data retrieval
can be achieved if the data-centric storage is enabled,
i.e., the data is stored by the types of animals, by the
activities performed by the animals, or by the tasks that
are carried out by the police officers. The challenge is to
design schemes that support data-centric storage in mobile
environments. In this paper, we consider a fully distributed
approach, in which there is no node playing the sole role
as storage; each node can act as both the collector and
the storage node. Further, to reduce the communication
overhead and achieve efficient data query, the storage
nodes are picked from the neighborhood, i.e., the nodes
in the transmission range, of the collector node.

However, in mobile wireless networks, it is possible that
both storage and collector nodes move in a broad area,
which brings the possibility that the storage nodes store
similar types may move far away and can not be easily
reachable in the future. Therefore, it is desirable that the
collector nodes migrate their data to the storage nodes
that not only possess similar data types but also highly
likely travel with them in the future. We define this kind
of storage nodes as near likely nodes, which are the nodes
that are in the neighborhood (i.e., near) and carry the same
type of data that needs to be stored (i.e., likely).

In this paper, we propose mechanisms to predict near
likely nodes for data-centric mobile wireless networks to
achieve efficient data storage and retrieval. We first define
a probability-based neighborhood prediction model. We
then propose two approaches, namely point-based and
traced-based, which predict the future neighborhood based
on the correlations of the past trajectories. Further, we
define a probability-based metric to measure the accu-
racy of prediction. Our approach of data transfer based
on neighbor prediction helps to reduce communication
overhead and consequently the overall energy consumption



during data retrieval.

To evaluate the effectiveness and efficiency of our
scheme, we conducted experiments using mobile wireless
networks simulated based on a city environment and its
vicinity in Germany [4]. Our experimental results show
high prediction accuracy and low computational time
when using our proposed mechanisms, thereby providing
strong evidence of the effectiveness of using data-centric
approach through the prediction of near likely nodes in
mobile wireless applications.

The rest of the paper is organized as follows. We
place our work in the context of the related research in
Section II. In Section III, we provide an overview of our
problem and formulate our probability-based neighbor-
hood prediction model. We next discuss the likelihood of
neighborhood by presenting our two prediction approaches
in Section IV. Further, we present the new metric for mea-
suring accuracy prediction and the experimental evaluation
of our approach in Section V. Finally, we conclude our
work in Section VI.

II. RELATED WORK

There has been active work on data-centric storage
[1]-3]. [1] achieved data-centric storage based on the
GPSR routing algorithm and an efficient peer-to-peer
lookup system. [2] developed schemes for resilient data-
centric storage from the viewpoint of energy savings and
scalability in sensor networks. Whereas the security and
privacy concerns in data-centric storage are addressed in
[3]. Most of these current work only deals with static
wireless networks. In this paper, we study data-centric
storage in mobile wireless networks.

To detect node mobility, [5] used received signal strength
in wireless LAN to detect wireless device mobility. [6]
determined mobility from GSM traces using different
metrics. In [7] signal variance is used with Hidden Markov
Model (HMM) to eliminate oscillations between the static
and mobile states for mobility detection. Further, [8]
proposed to use correlation coefficients on RSSI traces to
detect wireless devices that are moving together.

The work that are most closely related to ours are [9],
[10]. A user-centric approach was proposed in [9] for
colocation prediction that is used for media sharing based
on repeating similar journeys in the urban transportation
environment. Unlike [9], our approach does not require
repeated trajectory patterns, and thus is more generic and
can be applied to a broad array of pervasive applications
involving mobile sensors. [10] addressed the detection
of nodes of similar mobility patterns in group caching
in MANET. However, these work do not support fully
distributed models. Further, their work focused on current

neighbors, not the prediction of future ones. Our work
is novel in that we utilize the past sensor trajectories to
predict the future co-movement of sensors for data-centric
storage in mobile environments.

III. PROBLEM OVERVIEW

In this section, we first present our assumptions, and then
define our probability model for neighborhood prediction.

A. Assumptions

When considering data-centric mobile wireless net-
works, we have the following assumptions:

o Mobility The wireless devices are moving, randomly
or in some pattern, in a well-defined area. We assume
that the nodes know their physical locations at all time
points during moving. It is a reasonable assumption
because in many cases the data is useful only if
the location of its source is known. For example,
knowing that a crime occurred, which requires a law
enforcement action, but without knowing where it
occurred is useless. Localization of the mobile nodes
can be achieved through the use of GPS or some
other approximate but less burdensome localization
algorithms [11]. We assume that the nodes are not
aware of their moving patterns, if there is any.

o Neighborhood Each node has a communication
range and can communicate only with nodes within
its transmission range. We call the nodes in the
transmission range the neighbors. Mobility of nodes
may result in the change of the neighborhood. How-
ever, we assume that for every node, it has a stable
neighborhood within a period of time. For example,
police officers who carry out the same tasks are kept
neighborhood while they are on duty.

o Data-centric storage We assume that the storage
is data-centric, i.e., the particular node that stores
a given data object is determined by the object’s
type such as event type [1], [2]. Hence, all data with
the same type will be stored at the same node (not
necessarily the collector node), so that the subsequent
data retrieval requests could be efficiently directed.
In particular, we propose to transfer data of the
same type to a node’s near likely nodes. We assume
there will be nodes storing the same type of data in
the neighborhood. The subsequent data queries will
reach a collector node first through routing protocols
for mobile wireless networks [12] and will then be
redirected to the corresponding storage nodes. Our
future work will address the case when there are no
nodes storing the same type of data available in the
neighborhood.
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B. Probability Model

Generally, with mobile devices, the neighborhood may
change over time. Some nodes may move into or move out
of the transmission range periodically. To predict the future
neighborhood, we utilize the trajectory of the mobile
nodes. We assume the position of the nodes at each time
point is in a 2-dimensional space. We note that our results
can be easily extended to more than two dimensions. We
denote the location of mobile node s at time ¢ as s¢(z,y),
where = and y denote the z- and y- coordinates of s at
time point ¢. Then given a time window W (¢y,...,tn)
that consists of m time points, the trajectory of node s of
W is denoted as T'(s¢, (z,y), - . -, 8t,, (%, y)). Given a set of
trajectories 7 {T1,...,T,} of n nodes, our goal is to use
T to predict the neighborhood of s at a future time point
t; > tn,. To achieve this goal, we define a probability
model of prediction that quantifies the likelihood of the
future neighborhood. Since we assume that for every node,
it has a stable neighborhood within a period of time, our
prediction is based on the principle that the nodes that
are not only the neighbors in the past but also moving
in the same direction are highly likely to be neighbors in
the near future. Based on this, we define two probability
parameters.

1) Neighbor probability Pry: it is used to reflect the
belief from the trajectories 7 that a node s’ is in the
same neighborhood of the node s.

2) Direction probability Prg: it is used to measure the
likelihood from the trajectories 7 that two wireless
nodes s’ and s are moving in the same direction.

We further define the belief probability that node s’ is
in the neighborhood of s in the future as Prg expressed
by:

Prgi = Pry, * Pry. )]

Given the time window W, a collector node s and its
neighbor nodes, if s needs to store its data on its near likely
node, then from its neighbor nodes that have available
storage and store the same type of data that needs to be
transferred from s, s picks the node that is of the maximum
Prg. Our model can be easily extended to choosing k
nodes that are of top-k Prg;.

IV. NEIGHBORHOOD PREDICTION

In this section, we first explain how to compute the
neighbor probability Pr,. We then propose two ap-
proaches, namely frace-based and point-based approaches,
to calculate the direction probability Prg.

(a) X dimension, PCC = 0.96

(b) Y dimension, PCC = 0.96

Fig. 1. TIllustration of the x and y coordinates vs. time series for nodes
0 and 442 when they are moving together.

A. Neighbor probability

Given a node s within a time window W (¢t1,...,tn),
for any node ', let N(s') = {t; | 1 <i < m, s and s are
neighbors at time point ¢;}. Then the neighbor probability
is

Pro(s,s') =| N(s') | /m. ()]

Intuitively at more time points that s’ is in the neighbor-
hood of s in the past, it will be more likely that s’ remains
as the neighbor of s in the future.

B. Direction probability

If two wireless devices are moving in the same direc-
tion, they should have similar trajectories and their x—
and y— coordinates must follow the similar traces, and
consequently may result in a strong correlation between
their z— and y— coordinates respectively, and vice versa.
Figure 1 shows an example of the coordinates versus time
series when two nodes move together. We observed that
these two nodes have highly-correlated traces in both X
and Y dimensions.

Thus, to measure whether two nodes are moving in
the same direction, we can use the Pearson correlation
coefficient [13]. In general, the Pearson correlation coef-
ficient is a statistical method that measures the strength
and direction of a linear relationship between two given
random variables. More specifically, given two random
variables P = {pi,...,pn} and Q = {q1,...,qn}, the
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Fig. 2. An example of direction measurement

Pearson correlation coefficient PCC is defined as:

pco=1iy Bty @=@) G

n i1 op oQ

where P (Q, resp.) and op (0, resp.) are the mean and
standard deviation of P and ). The PCC' value ranges
from -1 to +1. Correlation +1/-1 means that there is a
perfect positive/negative linear relationship between P and
Q. In Figure 1, the high PC'C' value 0.96 for both the X
dimension and the Y dimension shows high correlation
between the coordinates of two nodes that are moving
together.

Further, to measure the direction probability, we de-
velop two schemes, namely point-based and trace-based
schemes, based on the Pearson correlation coefficient.
These two schemes consider both spatial and temporal
changes of nodes in mobile environments.

1) Point-based Scheme: This approach utilizes the mov-
ing direction of the node s and s’ at each time point ¢;
within a time window W to determine whether two nodes
are moving together. The key idea is that the collector node
computes the moving directions of the neighbor nodes at
all time points in the time window W and measures the
Pearson correlation coefficients of the moving directions.

Given the node s and its trajectory
T(s¢,(z,y),-..,5,, (z,y)), at each time point
ti(1 < i < m), we define the gradient 0; to measure the
moving direction at the time point ¢;.

0; = St oY — St Y ) (4)
St & — St;_, X

As defined, the gradient quantifies the direction that the
node moves from the time point ¢;_; to ¢;. Figure 2
illustrates an example. Although the gradient # may not be
accurate when the trajectory between the time points ¢;_
and t; is not linear, we argue that we can always reduce
the error by adding more time points on the non-linear
trajectories, so that the sub-trajectories are close to linear
format. For example, as shown in Figure 2 we can split
the non-linear trajectories between to and t3 into smaller
units by adding a time point ¢, between t2 and t3, as a

Fig. 3. The experimental data sets are generated based on the city
and its vicinity in Germany.

result the trajectories between ¢ and t}, as well as between
th, and t3 are close to linear.

Given two nodes s; and so, let 77 and T5 be the
trajectories of s; and ss of the time window W. At each
time point ¢;(1 < i < |W]) on both T} and T5, the node s;
calculates the gradient #; by using Equation 4. All 6;s are
put into two vectors ©; and O,, with 6; from trajectory
T, in ©; and from T in Oq. It is straightforward that
with m time points in W, there are m — 1 s in ©; and
©,. Finally, we measure the Pearson correlation coefficient
(Formula (3)) of ©; and ©,. If the coefficient is positive,
we take it as the direction probability Pry of node s; and
so. Otherwise, we value Pry as 0.

{PCC(@l, 0,) if PCC(01,0;) > 0;
Pry = . %)
0 otherwise.

2) Trace-based Scheme: In this approach, opposite to
the point-based approach, the collector node does not
calculate the moving direction at each time point. Instead,
it measures the Pearson correlation coefficients of two
trajectories. To be more specific, given two trajectories
T7 and T5 of two nodes s; and s, first, the collector node
s computes the Pearson correlation coefficient between
the x-coordinates of 717 and those of 715 and collects the
positive coefficients c,. Similarly, it calculates the Pearson
correlation coefficient of the y-coordinates of 77 and that
of T5. Let the set of positive coefficients be c,.

o — PCC(Th.X,T».X) if PCC(T1.X,T».X) > 0;
7o otherwise.

o = PCC(T.Y,T,.Y) if PCC(T1.Y,T5.Y) > 0;
Y7o otherwise.

(6)

As illustrated in Figure 1, when two nodes are moving

together, the values of correlation coefficients are high

in both X and Y dimensions. Since the correlation co-

efficients on X and Y dimensions are independent, we
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multiply ¢, and ¢y as the direction probability:
Prg = cg x cy. @)
Moreover, Pr, is normalized as needed.

V. EXPERIMENTAL EVALUATION

In this section, we describe our experimental method-
ology and evaluation metrics. We then present the results
that evaluate the effectiveness of our approaches.

A. Methodology

We would like to evaluate the feasibility of our approach
in an environment close to real applications (e.g. status
monitoring of patrol officers) using mobile wireless net-
works, we conducted experiments based on mobile nodes
generated from a city environment and its vicinity in
Germany [4] as shown in Figure 3. These mobile nodes
are the simulation of wireless devices carried by people.
The size of the area is 25000mx25000m. For our study
of number of neighbors, two data sets, we call small and
large, are obtained using this simulation environment with
1000 and 5000 nodes generated respectively and placed
randomly inside the city. The nodes are moving along the
roads in the city with walking speed around 4 feet per
second. For the duration of our study, some new nodes
may move into the city environment and some existing
nodes may move out the city environment. There are no
pre-defined trajectories for each node. However, group of
nodes may travel together to common destinations (e.g.,
the city center). For instance, we observed that in the small
data set the average number of neighbors increases from
a few nodes to around 14 nodes as the study time moves
along, indicating that groups of nodes are gradually formed
and traveling together to the similar destinations. Thus, this
environment is suitable for our neighborhood prediction
study.

B. Metrics

We develop the following performance metrics to eval-
uate the effectiveness of proposed mechanism in terms of
prediction of near likely nodes:

Prediction Accuracy: To measure the prediction ac-
curacy, we split the time points into two time windows,
namely past W), and future W;. The window of past W), is
used as the “training set” to predict the near likely nodes,
whereas the window of future Wy, is used as the “test
set” to verify the accuracy of the prediction. We choose
n nodes, denoted as S, as the “test participants”. Our
accuracy measurement consists of two steps:

o Step 1: Training. For each node s;(1 < ¢ < n)

in S, we find its near likely node s; that is of the

maximum Prg (Formula (1)) in the time window
Wp. For n nodes, we collect n such neighbor nodes
and put their Prg; into a vector P. Thus P consists
of n probability values.

o Step 2: Testing. For each near likely neighbor s}(1 <
i < n) from Step 1, we calculate its Pry of the
window W; and store Pry; in a vector (), which is
also a set of n probability values. Our measurement
of accuracy is based on the distance of P and Q).
The smaller the distance is, the more accurate the
prediction result will be.

To measure the distance of two probability distribution
P and Q, our metric of Prediction Accuracy is based
on KL-divergence. KL-divergence is a non-commutative
measure of the difference between two probability distri-
butions in probability theory and information theory [14].
Specifically, for probability distributions P and @, the KL-
divergence of () from P is defined as

Di1(Q,P) = 3 Qilog 2. ®

The smaller the value of Dy, is, the more () is similar
to P, which consequently indicates that our prediction of
future near likely node is more accurate.

In the following discussion, we use the percentage
of study time as the measurement of window size. We
investigate the impact of different window sizes of the
past as well as the future on the prediction accuracy using
both point-based and trace-based schemes.

Time Performance: By measuring the time that each
scheme needs to provide the prediction results, we eval-
uate the feasibility of applying these schemes to wireless
devices that usually have constraints on computational
power and memory. The Time Performance metric helps to
benchmark our approaches in the simulation environment
and further indicates the possibility to implement them in
real wireless devices.

C. Results

KL-divergence: We first study the neighborhood pre-
diction accuracy in our proposed mechanism. Figure 4
presents values of KL-divergence under various situations
for both point-based as well as trace-based schemes when
the average number of neighbors is 5. We observed small
KL-divergence values that are always less than 0.5. This is
encouraging as the smaller KL-divergence values indicate
that the distribution of the belief probability in the future
is close to the distribution of that in the past. Further,
as shown in Figure 4 (a) and (b), when fixing the time
window of the future, as the size of the past time window
increases, the KL-divergence value presents an overall
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(a) Future window 0.2

(c¢) Past window 0.2

(b) Future window 0.4

(d) Past window 0.4

Fig. 4. KL-divergence when the average number of neighbors is 5: (a) and (b) are fixed past window size, the future window size is set to 0.2
and 0.4 of the total study time respectively; (c) and (d) are fixed future window size, the past window size is set to 0.2 and 0.4 of the total study

time respectively.

decreasing trend for the point-based scheme. This means
that by using the point-based scheme, the larger the past
window size, the more accurate the prediction of near
likely node can become. However, for the trace-based
scheme, we observed that the KL-divergence value fluctu-
ates. This is interesting since it shows that for the trace-
based scheme, simply increasing the past window size
does not increase the accuracy, which indicates that we
need both expansion and shrinkage for adaptive adjustment
of window sizes.

On the other hand, when fixing the time window of the
past, as presented in Figure 4 (c) and (d), we observed
an increasing trend of the KL-divergence value for both
schemes as the window size of future is increasing when
the average number of neighbors is 5, indicating that the
near likely node may gradually moving away from the
collector node when the future is long enough. In general,
we found that the KL-divergence values of trace-based
scheme is smaller than those using point-based scheme.
Moreover, we observed similar results when the average
number of neighbors increases to 15 and 45. Due to space
limitation, the results are omitted. Therefore, the trace-
based scheme has better prediction accuracy than the
point-based scheme.

Additionally, we compared the values of KL-divergence
between the small and the large data sets. We observed
similar behavior for both large data set and small data set

Fig. 5. Comparison of hop counts during data retrieval with and
without our proposed scheme.

as the KL-divergence value presents an obvious decreasing
trend when increasing the past window size and decreasing
the future window size simultaneously. Furthermore, the
KL-divergence values are smaller for the large data set.
This is because there are more nodes in the large dataset,
which form larger neighborhood and thereby provides bet-
ter prediction result. Therefore, due to the space limitation,
we only present the results obtained from the small data
set in Figure 4.

Communication Overhead: We next study the com-
munication overhead incurred in terms of hop counts
during data retrieval. Figure 5 presents the number of hops
traveled with and without using the scheme we proposed
over the study time. We found that under our proposed
scheme the number of hops traveled for data retrieval is
less than half of that without using it, indicating that using
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(a) Different no. of neighbors

(b) Small and large data sets

Fig. 6. Comparison of time measurements between point-based and
trace-based schemes under different conditions: (a) different average
number of neighbors using the small data set; (b) small and large data
sets.

our scheme can significantly reduce the communication
overhead and thus reduce the overall energy consumption
of wireless devices. We will quantify the savings of energy
consumption in our future work.

Time Performance: Figure 6 presents the comparison
of time measurements under various conditions including
different average number of neighbors and various window
sizes for both small and large data sets. We found that the
time to perform neighborhood prediction is in the order of
milliseconds for both schemes. We observed that the point-
based scheme runs at about two times faster than the trace-
based scheme constantly under different average number
of neighbors and various window sizes. This is because the
trace-based scheme needs to calculate correlation coeffi-
cients for both X and Y dimensions, whereas the point-
based scheme only calculates the correlation coefficient
for gradient. Further, the time measurements of the large
data set are also in the order of milliseconds as shown in
Figure 6 (b). This indicates that even when a node has
large number of neighbors, our schemes can efficiently
predict the near likely nodes.

VI. CONCLUSION

In data-centric mobile wireless networks, to minimize
the communication overhead and achieve efficient data re-
trieval we proposed a distributed neighborhood prediction
model, which utilizes the past node trajectory information
to predict the near likely node that stores the same type of

data and will most likely to remain in the neighborhood
in the near future. These near likely nodes are chosen as
the content distributee so that the later data retrieval is
only needed in the neighborhood and thus more efficient
in terms of communication overhead and energy consump-
tion. We developed two schemes to predict the future
neighborhood, point-based and trace-based schemes. We
further derived a probability-based metric to measure the
accuracy of prediction. Our results using simulation data
generated from a city environment show that our prediction
schemes of near likely nodes can both effectively and
efficiently perform future neighborhood prediction, and
consequently achieving efficient data retrieval.
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